Volume 21, Issue 3 (2018)                   mjms 2018, 21(3): 141-146 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dibaei F, Fazilati M, Moenzadeh F, Kafayat A, Jazayeri N, Talebi A. Anti-angiogenesis Effect of C-Phycocyanin of Spirulina platensis on B16-F10 Melanoma Tumors in C57BL/6 Mouse. mjms 2018; 21 (3) :141-146
URL: http://mjms.modares.ac.ir/article-30-15489-en.html
1- Biology Department, Basic Sciences Faculty, Isfahan Branch, Payam-e-Noor University, Isfahan, Iran
2- Pathology Department, Medicine Faculty, Najaf Abad Branch, Islamic Azad University, Isfahan, Iran
3- Cancer Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
4- Pathology Department, Medicine Faculty, Isfahan University of Medical Sciences, Isfahan, Iran , talebi@med.mui.ac.ir
Abstract:   (8687 Views)
Aims: Melanoma is one of the most dangerous forms of skin cancer, which is unresponsive to the current chemotherapy drugs. As a natural product purified from spirulina, phycocyanin can inhibit the angiogenesis. The aim of this study was to investigate the anti-angiogenesis effect of C-phycocyanin of spirulina platensis on B16-F10 melanoma tumors in C57BL/6 mouse.
Materials and Methods: In this experimental study, 16 C57BL/6 mice with the age range of 6-8 weeks were randomly divided into two groups, including control and phycocyanin groups. On the day 0 of the study, melanoma cells were injected and all the mice were treated for 20 days. Phycocyanin group received 40mg/kg phycocyanin every day. The tumors were extracted on the day 21 and the effect of phycocyanin on the angiogenesis and proliferation of cancer cells was investigated, using immunohistochemical staining with CD31 and Ki-67, respectively. The data were analyzed, using JMP 11 software by one way ANOVA test.
Findings: In the phycocyanin group, angiogenesis was significantly lower than that of the control group (p<0.01), while the mitotic index was not significantly lower than that of the control group in the mice treated with phycocyanin.
Conclusion: Phycocyanin has ability to inhibit angiogenesis in the B16-F10 melanoma tumors in C57BL/6 mouse, but it is not able to reduce the proliferation of melanoma cells.
Full-Text [PDF 600 kb]   (2000 Downloads)    
Article Type: Original Manuscipt | Subject: Biochemistry
Received: 2017/12/16 | Accepted: 2018/03/18

1. Overwijk WW, Restifo NP. B16 as a mouse model for human melanoma. Curr Protoc Immunol. 2001;Chapter 20: Unit 20.1. [Link] [DOI:10.1002/0471142735.im2001s39]
2. Garbe C, Leiter U. Melanoma epidemiology and trends. Clin Dermatol. 2009;27(1):3-9. [Link] [DOI:10.1016/j.clindermatol.2008.09.001]
3. Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003;3(7):643–51. [Link] [DOI:10.2174/1566524033479465]
4. Sacewicz I, Wiktorska M, Wysocki T, Niewiarowska J. Mechanisms of cancer angiogenesis. Postepy Hig Med Dosw (Online). 2009;63:159-68. [Polish] [Link]
5. Higashi Y, Kanekura T, Kanzaki T. Enhanced expression of cycloxygenase (COX)-2 in human skin epidermal cancer cells: Evidence for growth suppression by inhibiting COX-2 expression. Int J Cancer. 2000;86(5):667-71. https://doi.org/10.1002/(SICI)1097-0215(20000601)86:5<667::AID-IJC10>3.0.CO;2-Y [Link] [DOI:10.1002/(SICI)1097-0215(20000601)86:53.0.CO;2-Y]
6. Gutiérrez-Salmeán G, Fabila-Castillo L, Chamorro-Cevallos G. Nutritional and toxicological aspects of Spirulina (Arthrospira) .Nutr Hosp. 2015;32(1):34-40. [Link]
7. Kuddus M, Singh P, Thomas G, Al-Hazimi A. Recent developments in production and biotechnological applications of c-phycocyanin. BioMed Res Int. 2013;(2013):742859. [Link] [DOI:10.1155/2013/742859]
8. Li B, Gao MH, Zhang XC, Chu XM. Molecular immune mechanism of Cphycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol Appl Biochem. 2006;43(Pt 3):155-64. [Link]
9. Ou Y, Lin L, Yang X, Pan Q, Cheng X. Antidiabetic potential of phycocyanin: Effects on KKAy mice. Pharm Biol. 2013;51(5):539-44. [Link] [DOI:10.3109/13880209.2012.747545]
10. Bhat VB, Madyastha KM. Cphycocyanin: A potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Commun. 2000;275(1):20-5. [Link] [DOI:10.1006/bbrc.2000.3270]
11. Nasirian F, Dadkhah M, Moradi-kor N, Obeidavi Z. Effects of Spirulina platensis microalgae on antioxidant and anti-inflammatory factors in diabetic rats. Diabetes Metab Syndr Obes Target Ther. 2018:11:375–80. [Link] [DOI:10.2147/DMSO.S172104]
12. Murugan T, Radhamad H. Screening for antifungal and antiviral activity of C-phycocyanin from Spirulina platensis. J Pharm Res. 2011;4(11):4161-3. [Link]
13. Najdenski HM, Gigova LG, Iliev II, Pilarski PS, Lukavský J, Tsvetkova IV. Antibacterial and antifungal activity of selected microalgae and cyanobacteria. Int J Food Sci Technol. 2013;48(7):1533-40. [Link] [DOI:10.1111/ijfs.12122]
14. Sarada DVL, Kumar CS, Rengasamy R. Purified C-phycocyanin from spirulina platensis (nordstedt) geitler: A novel and potent agent against drug resistant bacteria. World J Microbiol Biotechnol. 2011;27(4):779-83. [Link] [DOI:10.1007/s11274-010-0516-2]
15. Li B, Chu X, Gao M, Li W. Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin. Acta Biochim Biophys Sin (Shanghai). 2010;42(1):80-9. [Link] [DOI:10.1093/abbs/gmp104]
16. Roy KR, Arunasree KM, Reddy NP, Dheeraj B, Reddy GV, Reddanna P. Alteration of mitochondrial membrane potential by Spirulina platensis Cphycocyanin induces apoptosis in the doxorubicinresistant human hepatocellular-carcinoma cell line HepG2. Biotechnol Appl Biochem. 2007;47(Pt 3):159-67. [Link]
17. Chen HW, Yang TSh, Chen MJ, Chang YCh, Chen Wang EI, Ho ChL, et al. Purification and immunomodulating activity of C-phycocyanin from Spirulina platensis cultured using power plant flue gas. Process Biochem. 2014;49(8):1337-44. [Link] [DOI:10.1016/j.procbio.2014.05.006]
18. Yogianti F, Kunisada M, Nakano E, Ono R, Sakumi K, Oka S, et al. Inhibitory effects of dietary Spirulina platensis on UVB-induced skin inflammatory responses and carcinogenesis. J Invest Dermatol. 2014;134(10);2610-9. [Link] [DOI:10.1038/jid.2014.188]
19. Sarada R, Pillai MG, Ravishankar GA. Phycocyanin from Spirulina sp: Influence of processing of biomas on phycocyanin yield. Process Biochemistry. 1999;34(8):795-801. [Link] [DOI:10.1016/S0032-9592(98)00153-8]
20. Bennett A, Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol. 1973;58(2):419-35. [Link] [DOI:10.1083/jcb.58.2.419]
21. Weidner N. Measuring intratumoral microvessel density. Methodos Enzymol. 2008;444:305-23. [Link] [DOI:10.1016/S0076-6879(08)02814-0]
22. Saini MK, Sanyal SN, Vaiphei K. Piroxicam and C-Phycocyanin mediated apoptosis in 1,2-dimethylhydrazine dihydrochloride induced colon carcinogenesis: Exploring the mitochondrial pathway. Nutr Cancer. 2012;64(3):409-18. [Link] [DOI:10.1080/01635581.2012.655402]
23. Saini MK, Sanyal SN. Cell cycle regulation and apoptotic cell death in experimental colon carcinogenesis: Intervening with Cyclooxygenase-2 Inhibitors, Biochem. Nutr Cancer. 2015;67(4):206-18. [Link] [DOI:10.1080/01635581.2015.1015743]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.