Volume 21, Issue 2 (2018)                   mjms 2018, 21(2): 95-100 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tohidi F, Sadat S, Bolhasani A, Yaghobi R. Immunological Evaluation of HIV-1 VLP Harboring MPER-V3 in ‎BALB/c Mice Model. mjms. 2018; 21 (2) :95-100
URL: http://mjms.modares.ac.ir/article-30-2447-en.html
1- Microbiology Department, Science Agriculture & Modern Technology Faculty, Shiraz Branch, Islamic ‎Azad University, Shiraz, Iran
2- Hepatitis & AIDS and Blood- borne viruses, Pasteur Institute, Tehran, Iran‎ , Mehdi_sadat@pasteur.ac.ir
3- Hepatitis & AIDS and Blood- borne viruses, Pasteur Institute, Tehran, Iran‎
4- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract:   (8024 Views)
Aims: Developing an effective vaccine against Human Immunodeficiency Virus (HIV) is necessary. The aim of this study was the immunological evaluation of HIV-1 VLP harboring MPER-V3 in BALB/c mice model.
Materials and Methods: In the present experimental research, presenting 40 female mice, which were between 6 and 8 weeks old, were used for immunization with VLP MPER-V3. The mice were divided into 8 groups and in each group, 5 mice were considered. Injections were performed three times at three weeks intervals and subcutaneously in a volume of 100μl per mouse. Two weeks after last injection, mouse blood samples were collected by retro-orbital bleeding and immune responses were evaluated in serum for levels of total IgG and splenocytes for cytokine assay, using ELISA method. The data analysis was performed, using Mann-Whitney test and one-way analysis of variance.
Findings: The level of total antibody production was very high in all groups that had VLP alone or with adjuvant immunity, having a significant difference with the control group (p<0.05). IgG1 was the predominant isotype (Th2-biased response) in groups that had VLP injections alone or with adjuvant.
Conclusion: VLPs can stimulate the humoral immune system in mice immunized with these particles alone or formulated with adjuvant. Also, the level of production of IL-5 in the presence of the vaccine candidate as VLP increased significantly.
Full-Text [PDF 419 kb]   (1336 Downloads)    
Article Type: Original Manuscipt | Subject: Biochemistry
Received: 2017/12/18 | Accepted: 2018/01/14

References
1. UNAIDS. Fact sheet-Latest statistics on the status of the AIDS epidemic [Internet]. Geneva: UNAIDS; 2017 ‎‎[cited 2017, October]. Available from: http://www.unaids.org/en/resources/fact-sheet.‎ [Link]
2. Cubas R, Zhang S, Kwon S, Sevick-Muraca EM, Li M, Chen C, et al. Virus-like particle (VLP) lymphatic ‎trafficking and immune response generation after immunization by different routes. J Immunother. ‎‎2009;32(2):118-28. ‎ [Link]
3. Buonaguro L, Tagliamonte M, Visciano ML, Tornesello ML, Buonaguro FM. Developments in virus-like ‎particle-based vaccines for HIV. Expert Rev Vaccines. 2013;12(2):119-27.‎ [Link] [DOI:10.1586/erv.12.152]
4. Tohidi F, Sadat SM, Bolhassani A, Yaghobi R. Construction and production of HIV-VLP harboring MPER-V3 ‎for potential vaccine study. Curr HIV Res. 2017;15(6):434-9.‎ [Link]
5. Montero M, Van Houten NE, Wang X, Scott JK. The membrane-proximal external region of the human ‎immunodeficiency virus type 1 envelope: Dominant site of antibody neutralization and target for vaccine ‎design. Microbiol Mol Biol Rev. 2008;72(1):54-84. ‎ [Link] [DOI:10.1128/MMBR.00020-07]
6. Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA, Longo NS, et al. Broad and potent neutralization of ‎HIV-1 by a gp41-specific human antibody. Nature. 2012;491(7424):406-12. ‎ [Link]
7. Benen TD, Tonks P, Kliche A, Kapzan R, Heeney JL, Wagner R. Development and immunological ‎assessment of VLP-based immunogens exposing the membrane-proximal region of the HIV-1 gp41 protein. J ‎Biomed Sci. 2014;21:79. ‎ [Link] [DOI:10.1186/s12929-014-0079-x]
8. Van Gils MJ, Sanders RW. Broadly neutralizing antibodies against HIV-1: Templates for a vaccine. Virology. ‎‎2013;435(1):46-56. ‎ [Link] [DOI:10.1016/j.virol.2012.10.004]
9. Sadat SM, Zabihollahi R, Javadi F, Vahabpour R, Siadat SD, Azadmanesh K, et al. Immunological evaluation ‎of recombinant HIV1 virions with novel adjuvants in BALB/c mice model. J Mazandaran Univ Med Sci. ‎‎2011;21(84):13-21. [Persian]‎ [Link]
10. Bolhassani A, Kardani K, Vahabpour R, Habibzadeh N, Aghasadeghi MR, Sadat SM, et al. Prime/boost ‎immunization with HIV-1 MPER-V3 fusion construct enhances humoral and cellular immune responses. ‎Immunol Lett. 2015;168(2):366-73. ‎ [Link]
11. Sosa D, Dev Jayant R, Kaushik A, Nair M. Current status of human immunodeficiency virus vaccines. ‎Vaccin Res Open J. 2016;1(1):e3-5. ‎ [Link]
12. Zhao C, Ao Z, Yao X. Current advances in virus-like particles as a vaccination approach against HIV ‎infection. Vaccines (Basel). 2016;4(1):2. ‎ [Link] [DOI:10.3390/vaccines4010002]
13. Li Y, Migueles SA, Welcher B, Svehla K, Phogat A, K Louder M, et al. Broad HIV-1 neutralization ‎mediated by CD4-binding site antibodies. Nature Med. 2007;13:1032-4. ‎ [Link]
14. Giannini SL, Hanon E, Moris P, Van Mechelen M, Morel S, Dessy F, et al. Enhanced humoral and memory ‎B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination ‎‎(AS04) compared to aluminium salt only. Vaccine. 2006;24(33-34):5937-49. ‎ [Link]
15. Mahdavi M, Ebtekar M, Mahboudi F, Khorram Khorshid H, Rahbarizadeh F, Azadmanesh K, et al. ‎Immunogenicity of a new HIV-1 DNA construct in a BALB/c mouse model. Iran J Immunol. 2009;6(4):163-‎‎73. ‎ [Link]
16. Jafarpour N, Memarnejadian A, Aghasadeghi MR, Kohram F, Aghababa H, Khoramabadi N, et al. ‎Clustered epitopes within a new poly-epitopic HIV-1 DNA vaccine shows immunogenicity in BALB/c mice, Mol ‎Biol Rep. 2014;41(8):5207-14. ‎ [Link]
17. Reguzova A, Antonets D, Karpenko L, Ilyichev A, Maksyutov R, Bazhan S. Design and evaluation of ‎optimized artificial HIV-1 poly-T cell-epitope immunogens. PloS One. 2015;10(3):e0116412. ‎ [Link] [DOI:10.1371/journal.pone.0116412]
18. Ruprecht CR, Krarup A, Reynell L, Mann AM, Brandenberg OF, Berlinger L, et al. MPER-specific ‎antibodies induce gp120 shedding and irreversibly neutralize HIV-1. J Exp Med. 2011;208(3):439-54. ‎ [Link]
19. Gray ES, Madiga MC, Moore PL, Mlisana K, Abdool Karim SS, Binley JM, et al. Broad neutralization of ‎human immunodeficiency virus type 1 mediated by plasma antibodies against the gp41 membrane proximal ‎external region. J Virol. 2009;83(21):11265-74.‎ [Link]
20. Quan FS, Sailaja G, Skountzou I, Huang C, Vzorov A, Compans RW, et al. Immunogenicity of virus-like ‎particles containing modified human immunodeficiency virus envelope proteins. Vaccine. ‎‎2007;25(19):3841-50. ‎ [Link]
21. Mann JK, Ndung'u T. HIV-1 vaccine immunogen design strategies. Virol J. 2015;12:3. ‎ [Link] [DOI:10.1186/s12985-014-0221-0]
22. Arabi S, Aghasadeghi MR, Memarnejadian A, Kohram F, Aghababa H, Khoramabadi N, et al. Cloning, ‎expression and purification of a novel multi-epitopic HIV-1 vaccine candidate. Vacres. 2014;1(1):10-5. ‎ [Link]
23. Tumban E, Peabody J, Peabody DS, Chackerian B. A Universal virus-like particle-based vaccine for ‎human papillomavirus: Longevity of protection and role of endogenous and exogenous adjuvants. Vaccine. ‎‎2013;31(41):4647-54. ‎ [Link] [DOI:10.1016/j.vaccine.2013.07.052]
24. Yang K, Whalen B, Tirabassi RS, Selin L, Levchenko T, Torchilin VP, et al. A DNA vaccine prime followed ‎by a liposome-encapsulated protein boost confers enhanced mucosal immune responses and protection. J ‎Immunol. 2008;180(9):6159-67.‎ [Link]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.