1. Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1292-309. [
Link] [
DOI:10.1016/j.addr.2012.01.016]
2. Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2010;31(24):6279-308. [
Link] [
DOI:10.1016/j.biomaterials.2010.04.053]
3. Li P, Xu K, Tan Y, Lu C, Li Y, Wang P. A novel fabrication method of temperature-responsive poly (acrylamide) composite hydrogel with high mechanical strength. Polymer. 2013;54(21):5830-8. [
Link] [
DOI:10.1016/j.polymer.2013.08.019]
4. Kuckling D, Krahl ADF, Krahl F, Arndt KF. Stimuli-responsive polymer systems. Polym Sci, Compr Ref. 2012;8:377-413. [
Link]
5. Hoffman AS. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev. 2013;65(1):10-6. [
Link] [
DOI:10.1016/j.addr.2012.11.004]
6. Hathawaya H, Alves DR, Bean J, Esteban PP, Ouadi K, Sutton JM, et al. Poly(N-isopropylacrylamide-co-allylamine) (PNIPAM-co-ALA) nanospheres for the thermally triggered release of Bacteriophage K. Eur J Pharm Biopharm. 2015;96:437-41. [
Link]
7. Rejinold NS, Baby T, Chennazhi KP, Jayakumar R. Dual drug encapsulated thermo-sensitive fibrinogen-graft-poly (N-isopropyl acrylamide) nanogels for breast cancer therapy. Colloids Surf B Biointerfaces. 2014;114:209-17. [
Link] [
DOI:10.1016/j.colsurfb.2013.10.015]
8. Joshi RV, Nelson CE, Poole KM, Skala MC, Duvall CL. Dual pH- and temperature-responsive microparticles for protein delivery to ischemic tissues. Acta Biomater. 2013;9(5):6526-34. [
Link] [
DOI:10.1016/j.actbio.2013.01.041]
9. Ertan AB, Yılgor P, Bayyurt B, Çalıkoğlu AC, Kaspar Ç, Kök FN, et al. Effect of double growth factor release on cartilage tissue engineering. J Tissue Eng Regen Med. 2013;7(2):149-60. [
Link]
10. Garbern JC, Hoffman AS, Stayton PS. Injectable pH- and temperature-responsive poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromolecules. 2010;11(7):1833-9. [
Link] [
DOI:10.1021/bm100318z]
11. Naddaf AA, Tsibranska I, Bart HJ. Kinetics of BSA release from poly (N- isopropylacrylamide) hydrogels, Chem Eng Process, Process Intensif . 2010;49(6):581–8. [
Link] [
DOI:10.1016/j.cep.2010.05.008]
12. Das S, Suresh PK, Desmukh R. Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomedicine. 2010;6(2):318-23. [
Link]
13. Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887-913. [
Link]
14. Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, et al. Angiogenic factors in bone local environment. Cytokine Growth Factor Rev. 2013;24(3):297-310. [
Link]
15. Odedra D, Chiu LL, Shoichet M, Radisic M. Endothelial cells guided by immobilized gradients of vascular endothelial growth factor on porous collagen scaffolds. Acta Biomater. 2011;7(8):3027-35. [
Link] [
DOI:10.1016/j.actbio.2011.05.002]
16. Chen RR, Silva EA, Yuen WW, Brock AA, Fischbach C, Lin AS, et al. Integrated approach to designing growth factor delivery systems. FASEB J. 2007;21(14):3896-903. [
Link]
17. Böhrnsen F, Schliephake H. Supportive angiogenic and osteogenic differentiation of mesenchymal stromal cells and endothelial cells in monolayer and co-cultures. Int J Oral Sci. 2016;8(4):223-30. [
Link] [
DOI:10.1038/ijos.2016.39]
18. Bronckaers A, Hilkens P, Martens W, Gervois P, Ratajczak J, Struys T, et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol Ther. 2014;143(2):181-96. [
Link]
19. Bai Y, Yin G, Huang Z, Liao X, Chen X, Yao Y, et al. Localized delivery of growth factors for angiogenesis and bone formation in tissue engineering. Int Immunopharmacol. 2013;16(2):214-23. [
Link]
20. Probst A, Spiegel HU. Cellular mechanisms of bone repair. J Invest Surg. 1997;10(3):77-86. [
Link] [
DOI:10.3109/08941939709032137]
21. Mikos AG, Sarakinos G, Lyman MD, Ingber DE, Vacanti JP, Langer R. Prevascularization of porous biodegradable polymers. Biotechnol Bioeng. 1993;42(6):716-23. [
Link]
22. Lokmic Z, Mitchell GM. Engineering the microcirculation. Tissue Eng Part B Rev. 2008;14(1):87-103. [
Link]
23. Kang Y, Kim S, Fahrenholtz M, Khademhosseini A, Yang Y. Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Acta Biomater. 2013;9(1):4906-15. [
Link] [
DOI:10.1016/j.actbio.2012.08.008]
24. DeCicco-Skinner KL, Henry GH, Cataisson C, Tabib T, Gwilliam JC, Watson NJ, et al. Endothelial cell tube formation assay for the in vitro study of angiogenesis. J Vis Exp. 2014;(91):e51312. [
Link]
25. Bucatariu S, Fundueanu G, Prisacaru I, Balan M, Stoica I, Harabagiu V, et al. Synthesis and characterization of thermosensitive poly (N-isopropylacrylamide-co-hydroxyethylacrylamide) microgels as potential carriers for drug delivery. J Polym Res. 2014;21:580. [
Link]
26. Alf ME, Alan Hatton T, Gleason KK. Novel N-isopropylacrylamide based polymer architecture for faster LCST transition kinetics. Polymer. 2011;52(20):4429-34. [
Link] [
DOI:10.1016/j.polymer.2011.07.051]
27. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2(1):8-21. [
Link]
28. Chen MY, Lie PC, Li ZL, Wei X. Endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp Hematol. 2009;37(5):629-40. [
Link] [
DOI:10.1016/j.exphem.2009.02.003]
29. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater. 2012;23:13-27. [
Link]