Volume 23, Issue 2 (2020)                   mjms 2020, 23(2): 91-99 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sanaei B, Movaghar B, Rezazadeh Valojerdi M, Ebrahimi B, Bazrgar M, Hajian M, et al . Optimization of Ovine-Oocyte Vitrification Utilizing Calcium Depletion by Adding EGTA to Freezing Solution. mjms. 2020; 23 (2) :91-99
URL: http://mjms.modares.ac.ir/article-30-32959-en.html
1- Embryology Department, Reproductive Biomedicine Institute, Royan Institute (ACECR), Tehran, Iran
2- Embryology Department, Reproductive Biomedicine Institute, Royan Institute (ACECR), Tehran, Iran , b.movaghar@royaninstitute.org
3- Anatomy Department, Medical Science Faculty, Tarbiat Modares University, Tehran, Iran
4- Genetic Department, Reproductive Biomedicine Institute, Royan Institute (ACECR), Tehran, Iran
5- Reproductive Biotechnology Department, Reproductive Biomedicine Institute, Royan Institute (ACECR), Isfahan, Iran
Abstract:   (1014 Views)
Aims: Vitrification affects intracellular calcium, fertilization ability, and developmental competence of mammalian oocytes. This effect may be more closely associated with an intracellular calcium rise induced by cryoprotectants. The present study aimed to assess whether reducing calcium of vitrification solution could improve the fertilization and developmental competence of ovine oocytes.
Materials & Methods: COCs were collected from the ovine ovary. MII oocytes were divided into 5 groups, one non-vitrified (control) and four vitrified groups 24 hours after COC culture. Vitrified groups were designed according to the presence or absence of EGTA (a calcium chelator) and/or calcium in base media, including mPB1+ (modified PBS with Ca2+), mPB1- (modified PBS without Ca2+), mPB1+/EGTA (mPB1+ containing EGTA), mPB1-/EGTA (mPB1- containing EGTA). Fertilization rate and in vitro development were evaluated after embryo thawing. Also, blastocyst quality was assessed using differential staining. Data analysis was carried out using one-way analysis variance.
Findings: There was no significant difference in the viability rate between vitrified groups. Fertilization and the developmental rate decreased in the presence of calcium (p<0.05) but in the calcium-free medium with the EGTA supplementation group, the developmental rate obviously increased. On the other hand, blastocyst cell count in the control group was similar to vitrified groups.
Conclusion: Using a calcium-free cryoprotectant by adding EGTA can improve the quality of vitrified-thawed ovine MII oocyte and also a higher developmental rate in obtained embryos.
Full-Text [PDF 932 kb]   (325 Downloads)    
Article Type: Original Research | Subject: Embryology
Received: 2020/04/11 | Accepted: 2020/06/29

References
1. Mara L, Casu S, Carta A, Dattena M. Cryobanking of farm animal gametes and embryos as a means of conserving livestock genetics. Anim Reprod Sci. 2013;138(1-2):25-38. [Link] [DOI:10.1016/j.anireprosci.2013.02.006]
2. Silva AR, Lima GL, Peixoto GC, Souza AL. Cryopreservation in mammalian conservation biology: Current applications and potential utility. Res Rep Biodivers Stud. 2015;4:1-8. [Link] [DOI:10.2147/RRBS.S54294]
3. Hosseini SM, Asgari V, Ostadhosseini S, Hajian M, Ghanaei HR, Nasr-Esfahani MH. Developmental competence of ovine oocytes after vitrification: Differential effects of vitrification steps, embryo production methods, and parental origin of pronuclei. Theriogenology. 2015;83(3):366-76. [Link] [DOI:10.1016/j.theriogenology.2014.09.031]
4. Gardner DK, Sheehan CB, Rienzi L, Katz-Jaffe M, Larman MG. Analysis of oocyte physiology to improve cryopreservation procedures. Theriogenology. 2007;67(1):64-72. [Link] [DOI:10.1016/j.theriogenology.2006.09.012]
5. Bromfield JJ, Coticchio G, Hutt K, Sciajno R, Borini A, Albertini DF. Meiotic spindle dynamics in human oocytes following slow-cooling cryopreservation. Hum Reprod. 2009;24(9):2114-23. [Link] [DOI:10.1093/humrep/dep182]
6. Coticchio G, Bromfield JJ, Sciajno R, Gambardella A, Scaravelli G, Borini A, et al. Vitrification may increase the rate of chromosome misalignment in the metaphase II spindle of human mature oocytes. Reprod Biomed Online. 2009;19(Suppl 3):29-34. [Link] [DOI:10.1016/S1472-6483(10)60281-7]
7. Deng A, Wang WH. Assessment of aneuploidy formation in human blastocysts resulting from cryopreserved donor eggs. Mol Cytogenet. 2015;8(1):12. [Link] [DOI:10.1186/s13039-015-0117-8]
8. Bogliolo L, Ariu F, Fois S, Rosati I, Zedda MT, Leoni G, et al. Morphological and biochemical analysis of immature ovine oocytes vitrified with or without cumulus cells. Theriogenology. 2007;68(8):1138-49. [Link] [DOI:10.1016/j.theriogenology.2007.08.013]
9. Larman MG, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction. 2006;131(1):53-61. [Link] [DOI:10.1530/rep.1.00878]
10. Tian SJ, Yan CL, Yang HX, Zhou GB, Yang ZQ, Zhu SE. Vitrification solution containing DMSO and EG can induce parthenogenetic activation of in vitro matured ovine oocytes and decrease sperm penetration. Anim Reprod Sci. 2007;101(3-4):365-71. [Link] [DOI:10.1016/j.anireprosci.2007.01.007]
11. Kohaya N, Fujiwara K, Ito J, Kashiwazaki N. High developmental rates of mouse oocytes cryopreserved by an optimized vitrification protocol; The effects of cryoprotectants, calcium and cumulus cells. Reprod Dev. 2011:57(6):675-80. [Link] [DOI:10.1262/jrd.11-066H]
12. Larman MG, Katz-Jaffe MG, Sheehan CB, Gardner DK. 1, 2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum Reprod. 2007;22(1):250-9. [Link] [DOI:10.1093/humrep/del319]
13. Kline D, Kline JT. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol. 1992;149(1):80-9. [Link] [DOI:10.1016/0012-1606(92)90265-I]
14. Tahara MA, Tasaka KE, Masumoto NO, Mammoto AK, Ikebuchi YO, Miyake AK. Dynamics of cortical granule exocytosis at fertilization in living mouse eggs. Am J Physiol Cell Physiol. 1996;270(5):C1354-61. [Link] [DOI:10.1152/ajpcell.1996.270.5.C1354]
15. Succu S, Berlinguer F, Leoni GG, Bebbere D, Satta V, Marco-Jimenez F, et al. Calcium concentration in vitrification medium affects the developmental competence of in vitro matured ovine oocytes. Theriogenology. 2011;75(4):715-21. [Link] [DOI:10.1016/j.theriogenology.2010.10.012]
16. Wang N, Hao HS, Li CY, Zhao YH, Wang HY, Yan CL, et al. Calcium ion regulation by BAPTA-AM and ruthenium red improved the fertilisation capacity and developmental ability of vitrified bovine oocytes. Sci Rep. 2017;7(1):10652. [Link] [DOI:10.1038/s41598-017-10907-9]
17. Succu S, Bebbere D, Bogliolo L, Ariu F, Fois S, Leoni GG, et al. Vitrification of in vitro matured ovine oocytes affects in vitro pre‐implantation development and mRNA abundance. Mol Reprod Dev. 2008;75(3):538-46. [Link] [DOI:10.1002/mrd.20784]
18. Moulavi F, Hosseini SM, Hajian M, Forouzanfar M, Abedi P, Ostadhosseini S, et al. Nuclear transfer technique affects mRNA abundance, developmental competence and cell fate of the reconstituted sheep oocytes. Reproduction. 2013;145(4):345-55. [Link] [DOI:10.1530/REP-12-0318]
19. Mohsenzadeh M, Tabibnejad N, Vatanparast M, Anbari F, Khalili MA, Karimi-Zarchi M. Vitrification has detrimental effects on maturation, viability, and subcellular quality of oocytes post IVM in cancerous women: An experimental study. Int J Reprod Biomed. 2019;17(3):175-184. [Link] [DOI:10.18502/ijrm.v17i3.4516]
20. Wiesak T, Wasielak M, Złotkowska A, Milewski R. Effect of vitrification on the zona pellucida hardening and follistatin and cathepsin B genes expression and developmental competence of in vitro matured bovine oocytes. Cryobiology. 2017;76:18-23. [Link] [DOI:10.1016/j.cryobiol.2017.05.001]
21. Bogliolo L, Murrone O, Piccinini M, Ariu F, Ledda S, Tilocca S, et al. Evaluation of the impact of vitrification on the actin cytoskeleton of in vitro matured ovine oocytes by means of Raman microspectroscopy. J Assist Reprod Genet. 2015;32(2):185-93. [Link] [DOI:10.1007/s10815-014-0389-7]
22. Kim SS, Olsen R, Kim DD, Albertini DF. The impact of vitrification on immature oocyte cell cycle and cytoskeletal integrity in a rat model. J Assist Reprod Genet. 2014;31(6):739-47. [Link] [DOI:10.1007/s10815-014-0216-1]
23. Tamura AN, Huang TT, Marikawa Y. Impact of vitrification on the meiotic spindle and components of the microtubule-organizing center in mouse mature oocytes. Biol Reprod. 2013;89(5):112:1-10. [Link] [DOI:10.1095/biolreprod.113.108167]
24. Liu MH, Zhou WH, Chu DP, Fu L, Sha W, Li Y. Ultrastructural changes and methylation of human oocytes vitrified at the germinal vesicle stage and matured in vitro after thawing. Gynecol Obstet Investig. 2017;82(3):252-61. [Link] [DOI:10.1159/000448143]
25. Liu M, Zhou W, Chu D, Fu L, Sha W, Liu S, et al. A modified vitrification method reduces spindle and chromosome abnormalities. Syst Biol Reprod Med. 2017;63(3):199-205. [Link] [DOI:10.1080/19396368.2017.1285370]
26. Nagai S, Mabuchi T, Hirata S, Shoda T, Kasai T, Yokota S, et al. Correlation of abnormal mitochondrial distribution in mouse oocytes with reduced developmental competence. Tohoku J Exp Med. 2006;210(2):137-44. [Link] [DOI:10.1620/tjem.210.137]
27. Nazmara Z, Salehnia M, HosseinKhani S. Mitochondrial distribution and ATP content of vitrified, in vitro matured mouse oocytes. Avicenna J Med Biotechnol. 2014;6(4):210-17. [Link]
28. Succu S, Gadau SD, Serra E, Zinellu A, Carru C, Porcu C, et al. A recovery time after warming restores mitochondrial function and improves developmental competence of vitrified ovine oocytes. Theriogenology. 2018;110:18-26. [Link] [DOI:10.1016/j.theriogenology.2017.12.031]
29. Gutnisky C, Morado S, Gadze T, Donato A, Alvarez G, Dalvit G, et al. Morphological, biochemical and functional studies to evaluate bovine oocyte vitrification. Theriogenology. 2020;143:18-26. [Link] [DOI:10.1016/j.theriogenology.2019.11.037]
30. Chang H, Chen H, Zhang L, Wang Y, Xie X, Zhang Y, et al. Effect of oocyte vitrification on DNA damage in metaphase II oocytes and the resulting preimplantation embryos. Mol Reprod Dev. 2019;86(11):1603-14. [Link] [DOI:10.1002/mrd.23247]
31. Sudiman J, Lee A, Ong KL, Yuan WZ, Jansen S, Temple-Smith P, et al. Tolerance of lamb and mouse oocytes to cryoprotectants during vitrification. Zygote. 2019;27(1):36-45. [Link] [DOI:10.1017/S0967199418000606]
32. Fu XW, Shi WQ, Zhang QJ, Zhao XM, Yan CL, Hou YP, et al. Positive effects of taxol pretreatment on morphology, distribution and ultrastructure of mitochondria and lipid droplets in vitrification of in vitro matured porcine oocytes. Anim Reprod Sci. 2009;115(1-4):158-68. [Link] [DOI:10.1016/j.anireprosci.2008.12.002]
33. Mahmoud K, El-Sokary MM. Improvement of the efficacy of buffalo oocytes vitrification. Glob Vet. 2013;11(4):420-31. [Link]
34. Park KE, Kwon IK, Han MS, Niwa K. Effects of partial removal of cytoplasmic lipid on survival of vitrified germinal vesicle stage pig oocytes. J Reprod Dev. 2005;51(1):151-60. [Link] [DOI:10.1262/jrd.51.151]
35. Zeron Y, Tomczak M, Crowe J, Arav A. The effect of liposomes on thermotropic membrane phase transitions of bovine spermatozoa and oocytes: Implications for reducing chilling sensitivity. Cryobiology. 2002;45(2):143-52. [Link] [DOI:10.1016/S0011-2240(02)00123-2]
36. Yi M, Weaver D, Hajnóczky G. Control of mitochondrial motility and distribution by the calcium signal: A homeostatic circuit. J Cell Biol. 2004;167(4):661-72. [Link] [DOI:10.1083/jcb.200406038]
37. Vendrell FJ, Ten J, De Oliveira MN, Cano A, Tarin JJ. Effect of intracellular Ca 2+ chelation with the acetoxymethyl ester-derived form of bis (o-Aminophenoxy) ethane-N, N, N, N′, N′-Tetraacetic acid on meiotic division and chromosomal segregation in mouse oocytes. J Assist Reprod Genet. 1999;16(5):276-82. [Link] [DOI:10.1023/A:1020323730908]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.