Volume 23, Issue 1 (2020)                   mjms 2020, 23(1): 33-39 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasanshahi Z, Dehghani B, Hashempour T. Study of Structural and Immunological Properties of Glycoprotein S of the East Respiratory Syndrome Coronavirus (MERS-CoV). mjms. 2020; 23 (1) :33-39
URL: http://mjms.modares.ac.ir/article-30-39308-en.html
1- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract:   (1016 Views)
Aims: No definitive treatment or effective vaccine has been suggested against the East Respiratory Syndrome Coronavirus (MERS-CoV) virus which indicates the growing importance of the study of this virus. Amongst all MERS proteins, glycoprotein S has always been the main candidate for vaccine research against this virus, due to its function and structure. The aim of the present study was to investigate the structural, functional, and immunological properties of S protein using bioinformatics software that paves the way for designing an effective vaccine against this virus.
Materials & Methods: 35 glycoprotein S sequences of MERS were obtained from Genbank and amino acid changes were investigated. In addition, sequences were analyzed by various software for post-translational changes. Five types of software were used to evaluate the immunologic and allergenic properties. Finally, different structural aspects of this protein were predicted by SOPMA software.
Findings: The highest prevalence substitutions were found in amino acids of 95, 123, and 696 and the results indicate that there are four B-cell epitopes in glycoprotein S, and this protein has been affected by post-translational changes, including glycosylation and phosphorylation. This protein has no allergenic properties and the majority of its structure contains Alpha helix.
Conclusion: Glycoprotein S, especially in the RBD region of S1, has a high potential to induce the host immune system and the other features mentioned protein make it appropriate for the production of recombinant protein, including stability in host cells. Therefore, the use of glycoprotein S, especially S1, is recommended as a suitable candidate for vaccine design.
Full-Text [PDF 467 kb]   (299 Downloads)    
Article Type: Original Research | Subject: Molecular Biology
Received: 2019/12/25 | Accepted: 2020/06/4

1. Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New Engl J Med. 2012;367(19):1814-20. [Link] [DOI:10.1056/NEJMoa1211721]
2. Cowling BJ, Park M, Fang VJ, Wu P, Leung GM, Wu JT. Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015. Eurosurveillance. 2015;20(25):21163. [Link] [DOI:10.2807/1560-7917.ES2015.20.25.21163]
3. Graham RL, Donaldson EF, Baric RS. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat Rev Microbiol. 2013;11(12):836-48. [Link] [DOI:10.1038/nrmicro3143]
4. Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. 2015;386(9997):995-1007. [Link] [DOI:10.1016/S0140-6736(15)60454-8]
5. Watson JT, Hall AJ, Erdman DD, Swerdlow DL, Gerber SI. Unraveling the mysteries of Middle East respiratory syndrome coronavirus. Emerg Infect Dis. 2014;20(6):1054-6. [Link] [DOI:10.3201/eid2006.140322]
6. Mohd HA, Al-Tawfiq JA, Memish ZA. Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir. Virol J. 2016;13(1):87. [Link] [DOI:10.1186/s12985-016-0544-0]
7. Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, Menachery VD, et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci. 2013;110(40):16157-62. [Link] [DOI:10.1073/pnas.1311542110]
8. Zhang Z, Shen L, Gu X. Evolutionary dynamics of MERS-CoV: potential recombination, positive selection and transmission. Sci Rep. 2016;6(1):25049. [Link] [DOI:10.1038/srep25049]
9. Mou H, Raj VS, Van Kuppeveld FJ, Rottier PJ, Haagmans BL, Bosch BJ. The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J Virol. 2013;87(16):9379-83. [Link] [DOI:10.1128/JVI.01277-13]
10. Du L, He Y, Zhou Y, Liu Sh, Zheng BJ, Jiang S. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3):226-36. [Link] [DOI:10.1038/nrmicro2090]
11. Xia Sh, Liu Q, Wang Q, Sun Z, Su Sh, Du L, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res. 2014;194:200-10. [Link] [DOI:10.1016/j.virusres.2014.10.007]
12. Li F. Receptor recognition mechanisms of coronaviruses: A decade of structural studies. J Virol. 2015;89(4):1954-64. [Link] [DOI:10.1128/JVI.02615-14]
13. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309(5742):1864-8. [Link] [DOI:10.1126/science.1116480]
14. Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013;23(8):986-93. [Link] [DOI:10.1038/cr.2013.92]
15. Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun. 2017;8(1):15092. [Link] [DOI:10.1038/ncomms15092]
16. Farhadi T, Nezafat N, Ghasemi Y, Karimi Z, Hemmati Sh, Erfani N. Designing of complex multi-epitope peptide vaccine based on omps of Klebsiella pneumoniae: An in silico approach. Int J Pept Res Ther. 2015;21(3):325-41. [Link] [DOI:10.1007/s10989-015-9461-0]
17. Dehghani B, Ghasabi F, Hashempoor T, Joulaei H, Hasanshahi Z, Halaji M, et al. Functional and structural characterization of Ebola virus glycoprotein (1976-2015)-An in silico study. Int J Biomath. 2017;10(08):1750108. [Link] [DOI:10.1142/S179352451750108X]
18. Moattari A, Dehghani B, Khodadad N, Tavakoli F. In silico functional and structural characterization of H1N1 influenza a viruses hemagglutinin, 2010-2013, Shiraz, Iran. Acta Biotheor. 2015;63(2):183-202. [Link] [DOI:10.1007/s10441-015-9260-1]
19. Dehghania B, Hashempoura T, Hasanshahia Z, Rasoolib I. Immunogenicity, antigenicity and epitope mapping of Salmonella InvH protein: An in silico study. J Curr Biomed Rep. 2020;1(1):1-9. [Link]
20. Hashempoura T, Dehghania B, Mousavi Z, Akbari T, Hasanshahi Z, Moayedi J, et al. Association of mutations in the NS5A-PKRBD region and IFNL4 genotypes with hepatitis C interferon responsiveness and its functional and structural analysis. Curr Proteom. 2020;17. [Link] [DOI:10.2174/1570164617666200107091124]
21. Dehghani B, Hasanshahi Z, Hashempour T. HIV capsid and protease, new targets of melittin. Int J Pept Res Ther. 2020. [Link] [DOI:10.1007/s10989-019-10002-9]
22. Dehghani B, Hasanshahi Z, Hashempour T, Motamedifar M. The possible regions to design Human Papilloma Viruses vaccine in Iranian L1 protein. Biologia. 2020;75(5):749-59. [Link] [DOI:10.2478/s11756-019-00386-w]
23. Hashempour T, Dehghani B, Mousavi Z, Yahaghi M, Hasanshahi Z, Moayedi J, Akbari T, Davarpanah MA. Evaluating drug resistant mutations to HCV NS3 protease inhibitors in iranian Naïve patients. Int J Pept Res Ther. 2019. [Link] [DOI:10.1007/s10989-019-09957-6]
24. Dehghani B, Hashempour T, Hasanshahi Z, Moayedi J. Bioinformatics analysis of domain 1 of HCV-core protein: Iran. Int J Pept Res Ther. 2020;26(1):303-20. [Link] [DOI:10.1007/s10989-019-09838-y]
25. Dehghani B, Hashempour T, Hasanshahi Z. Using immunoinformatics and structural approaches to design a novel HHV8 vaccine. Int J Pept Res Ther. 2020;26(1):321-31. [Link] [DOI:10.1007/s10989-019-09839-x]
26. Musavi Z, Hashempour T, Moayedi J, Dehghani B, Ghassabi F, Hallaji M, et al. Antibody development to HCV alternate reading frame protein in liver transplant candidate and its computational analysis. Curr Proteom. 2020;17(2):154-70. [Link] [DOI:10.2174/1570164617666190822103329]
27. Dehghani B, Hashempour T, Hasanshahi Z. Interaction of human herpesvirus 8 viral interleukin-6 with human interleukin-6 receptor using in silico approach: The potential role in HHV-8 pathogenesis. Curr Proteom. 2020;17(2):107-16. [Link] [DOI:10.2174/1570164616666190626151949]
28. Al-Amri SS, Abbas AT, Siddiq LA, Alghamdi A, Sanki MA, Al-Muhanna MK, et al. Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein. Sci Rep. 2017;7:44875. [Link] [DOI:10.1038/srep44875]
29. Grehan K, Ferrara F, Temperton N. An optimised method for the production of MERS-CoV spike expressing viral pseudotypes. MethodsX. 2015;2:379-84. [Link] [DOI:10.1016/j.mex.2015.09.003]
30. Mousavi P, Mostafavi-Pour Z, Morowvat MH, Nezafat N, Zamani M, Berenjian A, et al. In silico analysis of several signal peptides for the excretory production of reteplase in Escherichia coli. Curr Proteom. 2017;14(4):326-35. [Link] [DOI:10.2174/1570164614666170809144446]
31. Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S. MERS-CoV spike protein: A key target for antivirals. Expert Opin Ther Targets. 2017;21(2):131-43. [Link] [DOI:10.1080/14728222.2017.1271415]
32. Petit CM, Melancon JM, Chouljenko VN, Colgrove R, Farzan M, Knipe DM, et al. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion. Virology. 2005;341(2):215-30. [Link] [DOI:10.1016/j.virol.2005.06.046]
33. Yang Y, Du L, Liu Ch, Wang L, Ma C, Tang J, et al. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc Natl Acad Sci. 2014;111(34):12516-21. [Link] [DOI:10.1073/pnas.1405889111]
34. Morshed MM, Gazi MA, Musa MA, Kibria MG, Uddin MJ, Khan MA, et al. Computer aided prediction and identification of potential epitopes in the receptor binding domain (RBD) of spike (S) glycoprotein of MERS-CoV. Bioinformation. 2014;10(8):533-8. [Link] [DOI:10.6026/97320630010533]
35. Tang XC, Agnihothram SS, Jiao Y, Stanhope J, Graham RL, Peterson EC, et al. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc Natl Acad Sci. 2014;111(19):E2018-26. [Link] [DOI:10.1073/pnas.1402074111]
36. Badawi MM, SalahEldin MA, Suliman MM, AbduRahim SA, Mohammed AE, SidAhmed SA, et al. In silico prediction of a novel universal multi-epitope peptide vaccine in the whole spike glycoprotein of MERS CoV. Am J Microbiol Res. 2016;4(4):101-21. [Link]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.