1. Nait-Oumesmar B, Picard-Riera N, Kerninon C, Decker L, Seilhean D, Höglinger GU, et al. Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proceedings of the National Academy of Sciences. 2007;104(11):4694-9.
2. Höftberger R, Lassmann H. Inflammatory demyelinating diseases of the central nervous system. Handbook of clinical neurology. 2018;145:263-83.
3. Zhao J-W, Wang D-X, Ma X-R, Dong Z-J, Wu J-B, Wang F, et al. Impaired metabolism of oligodendrocyte progenitor cells and axons in demyelinated lesion and in the aged CNS. Current Opinion in Pharmacology. 2022;64:102205.
4. Tepavčević V, Lubetzki C. Oligodendrocyte progenitor cell recruitment and remyelination in multiple sclerosis: the more, the merrier? Brain. 2022;145(12):4178-92.
5. Maki T, Liang AC, Miyamoto N, Lo EH, Arai K. Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases. Frontiers in cellular neuroscience. 2013;7:275.
6. Geribaldi-Doldán N, Carrascal L, Pérez-García P, Oliva-Montero JM, Pardillo-Díaz R, Domínguez-García S, et al. Migratory Response of Cells in Neurogenic Niches to Neuronal Death: The Onset of Harmonic Repair? International Journal of Molecular Sciences. 2023;24(7):6587.
7. Boshans LL, Sherafat A, Nishiyama A. The effects of developmental and current niches on oligodendrocyte precursor dynamics and fate. Neuroscience letters. 2020;715:134593.
8. Nishiyama A, Shimizu T, Sherafat A, Richardson WD, editors. Life-long oligodendrocyte development and plasticity. Seminars in cell & developmental biology; 2021: Elsevier.
9. Zhou B, Zhu Z, Ransom BR, Tong X. Oligodendrocyte lineage cells and depression. Molecular psychiatry. 2021;26(1):103-17.
10. Butt AM, Rivera AD, Fulton D, Azim K. Targeting the subventricular zone to promote myelin repair in the aging brain. Cells. 2022;11(11):1809.
11. Cunniffe N, Coles A. Promoting remyelination in multiple sclerosis. Journal of neurology. 2021;268(1):30-44.
12. Kipp M, Nyamoya S, Hochstrasser T, Amor S. Multiple sclerosis animal models: a clinical and histopathological perspective. Brain pathology. 2017;27(2):123-37.
13. Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Molecular Neurodegeneration. 2022;17(1):1-28.
14. Sen MK, Mahns DA, Coorssen JR, Shortland PJ. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neuroscience & Biobehavioral Reviews. 2019;107:23-46.
15. Morgan ML, Teo W, Hernandez Y, Brideau C, Cummins K, Kuipers HF, et al. Cuprizone-induced Demyelination in Mouse Brain is not due to Depletion of Copper. ASN neuro. 2022;14:17590914221126367.
16. Oh J, Vidal-Jordana A, Montalban X. Multiple sclerosis: clinical aspects. Current opinion in neurology. 2018;31(6):752-9.
17. Kalakh S, Mouihate A. Demyelination-induced inflammation attracts newly born neurons to the white matter. Molecular neurobiology. 2017;54:5905-18.
18. Kang W, Nguyen KC, Hébert JM. Transient redirection of SVZ stem cells to oligodendrogenesis by FGFR3 activation promotes remyelination. Stem Cell Reports. 2019;12(6):1223-31.
19. Badner A, Cummings BJ. The endogenous progenitor response following traumatic brain injury: A target for cell therapy paradigms. Neural regeneration research. 2022;17(11):2351.