Introducing a method for implantation of stimulating electrodes in olfactory epithelium for brain stimulation

Document Type : Original Research

Authors
1 Tarbiat Modares university
2 Tarbiat modares University
Abstract
Olfactory system may be considered as a target for deep brain stimulation. In experimental researches, it is difficult to insert an electrode in the olfactory epithelium (OE) of laboratory animals, including mice, through nasal cavity. Therefore, it is necessary to find a method for insertion of electrodes in the OE. In the present study we introduce a new method for electrode implantation in mice OE. Male C57BL/6 mice, aged 3-4 months were used. Animals were anesthetized and a pair of bipolar electrodes were inserted into the OE through a hole on the nasal bone. Field potential recordings were made from olfactory bulb and confirmed the electrode positions in OE, so that OE stimulation led to field excitatory post synaptic potentials (fEPSP) in olfactory bulb. In addition, considering the connection between olfactory system and hippocampus, the fEPSPs were also recorded in the hippocampus after a long synaptic delay. On the whole, we introduced a method for OE stimulation in mice as a common laboratory animal. This methos may be suitable in deep brain stimulation experiments in different animal models of neurological diseases.

Keywords


1. Lozano, A.M., et al., A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer's Disease. J Alzheimers Dis, 2016. 54(2): p. 777-87.
2. Shaheen, N., et al., Deep brain stimulation for chronic pain: a systematic review and meta-analysis. Front Hum Neurosci, 2023. 17: p. 1297894.
3. Kluger, B.M., O. Klepitskaya, and M.S. Okun, Surgical treatment of movement disorders. Neurol Clin, 2009. 27(3): p. 633-77, v.
4. Marín, G., et al., Deep brain stimulation in neurological diseases and other pathologies. Neurology perspectives.
5. Marín, G., et al., Deep brain stimulation in neurological diseases and other pathologies. Neurology Perspectives, 2022. 2(3): p. 151-159.
6. Caggiano, M., J.S. Kauer, and D.D. Hunter, Globose basal cells are neuronal progenitors in the olfactory epithelium: a lineage analysis using a replication-incompetent retrovirus. Neuron, 1994. 13(2): p. 339-52.
7. Calof, A.L., et al., Factors affecting neuronal birth and death in the mammalian olfactory epithelium. Ciba Found Symp, 1996. 196: p. 188-205; discussion; 205-10.
8. Calof, A.L., et al., Factors regulating neurogenesis and programmed cell death in mouse olfactory epithelium. Ann N Y Acad Sci, 1998. 855: p. 226-9.
9. Graziadei, P.P. and G.A. Graziadei, Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol, 1979. 8(1): p. 1-18.
10. Magrassi, L. and P.P. Graziadei, Cell death in the olfactory epithelium. Anat Embryol (Berl), 1995. 192(1): p. 77-87.
11. Pignatelli, A. and O. Belluzzi, Frontiers in Neuroscience Neurogenesis in the Adult Olfactory Bulb, in The Neurobiology of Olfaction, A. Menini, Editor. 2010, CRC Press/Taylor & FrancisCopyright © 2010 by Taylor and Francis Group, LLC.: Boca Raton (FL).
12. Schiffman, S.S., Smell and Taste, in Encyclopedia of Gerontology (Second Edition), J.E. Birren, Editor. 2007, Elsevier: New York. p. 515-525.
13. Grosmaitre, X., et al., Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat Neurosci, 2007. 10(3): p. 348-54.
14. Merrick, C., et al., The olfactory system as the gateway to the neural correlates of consciousness. 2014. 4.
15. Yaldizli, Ö., et al., The association between olfactory bulb volume, cognitive dysfunction, physical disability and depression in multiple sclerosis. Eur J Neurol, 2016. 23(3): p. 510-9.
16. Salimi, M., et al., Distraction of olfactory bulb-medial prefrontal cortex circuit may induce anxiety-like behavior in allergic rhinitis. PLoS One, 2019. 14(9): p. e0221978.
17. Arshamian, A., et al., Respiration Modulates Olfactory Memory Consolidation in Humans. J Neurosci, 2018. 38(48): p. 10286-10294.
18. Zelano, C., et al., Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function. 2016. 36(49): p. 12448-12467.
19. Heck, D.H., R. Kozma, and L.M. Kay, The rhythm of memory: how breathing shapes memory function. J Neurophysiol, 2019. 122(2): p. 563-571.
20. Vanderwolf, C.H., Hippocampal activity, olfaction, and sniffing: an olfactory input to the dentate gyrus. Brain Res, 1992. 593(2): p. 197-208.
21. van Groen, T. and J.M. Wyss, Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol, 1990. 302(3): p. 515-28.
22. Moberly, A.H., et al., Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nat Commun, 2018. 9(1): p. 1528.
23. Salimi, M., et al., The olfactory bulb coordinates the ventral hippocampus-medial prefrontal cortex circuit during spatial working memory performance. J Physiol Sci, 2022. 72(1): p. 9.
24. Granger, R. and G. Lynch, Higher olfactory processes: perceptual learning and memory. Curr Opin Neurobiol, 1991. 1(2): p. 209-14.
25. Lozano, A.M., et al., Deep brain stimulation: current challenges and future directions. Nat Rev Neurol, 2019. 15(3): p. 148-160.
26. Pycroft, L., J. Stein, and T. Aziz, Deep brain stimulation: An overview of history, methods, and future developments. Brain Neurosci Adv, 2018. 2: p. 2398212818816017.
27. Saway, B.F., et al., Functional MRI-Guided Motor Cortex and Deep Brain Stimulation for Intractable Facial Pain: A Novel, Personalized Approach in 1 Patient. Oper Neurosurg (Hagerstown), 2023. 24(1): p. 103-110.
28. Abreu, V., et al., Thalamic deep brain stimulation for post-traumatic neuropathic limb pain: Efficacy at five years' follow-up and effective volume of activated brain tissue. Neurochirurgie, 2022. 68(1): p. 52-60.
29. Cappon, D., et al., Ventral tegmental area deep brain stimulation for chronic cluster headache: Effects on cognition, mood, pain report behaviour and quality of life. Cephalalgia, 2019. 39(9): p. 1099-1110.
30. Kashanian, A., et al., Case Series: Deep Brain Stimulation for Facial Pain. Oper Neurosurg (Hagerstown), 2020. 19(5): p. 510-517.
31. Polanski, W.H., et al., Somatosensory functional MRI tractography for individualized targeting of deep brain stimulation in patients with chronic pain after brachial plexus injury. Acta Neurochir (Wien), 2019. 161(12): p. 2485-2490.
32. Bewernick, B.H., et al., Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy. Neuropsychopharmacology, 2012. 37(9): p. 1975-85.
33. Corripio, I., et al., Deep brain stimulation in treatment resistant schizophrenia: a pilot randomized cross-over clinical trial. 2020. 51.
34. Denys, D., et al., Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry, 2010. 67(10): p. 1061-8.
35. Peisker, C.B., et al., Nucleus Accumbens Deep Brain Stimulation in Patients with Substance Use Disorders and Delay Discounting. Brain Sci, 2018. 8(2).
36. Wu, H., et al., Deep-brain stimulation for anorexia nervosa. World Neurosurg, 2013. 80(3-4): p. S29.e1-10.
37. Kocabicak, E., et al., Current perspectives on deep brain stimulation for severe neurological and psychiatric disorders. Neuropsychiatr Dis Treat, 2015. 11: p. 1051-66.
38. Schneider, T.M., et al., Deep brain stimulation of the lateral habenular complex in treatment-resistant depression: traps and pitfalls of trajectory choice. Neurosurgery, 2013. 72(2 Suppl Operative): p. ons184-93; discussion ons193.
39. Wang, J.W., et al., Deep Brain Stimulation of Pedunculopontine Nucleus for Postural Instability and Gait Disorder After Parkinson Disease: A Meta-Analysis of Individual Patient Data. World Neurosurg, 2017. 102: p. 72-78.
40. Langevin, J.P., et al., Deep Brain Stimulation of the Basolateral Amygdala: Targeting Technique and Electrodiagnostic Findings. Brain Sci, 2016. 6(3).
41. Castillo, P.R., et al., Globus Pallidus Externus Deep Brain Stimulation Treats Insomnia in a Patient With Parkinson Disease. Mayo Clin Proc, 2020. 95(2): p. 419-422.
42. Liu, H., et al., The effect of fornix deep brain stimulation in brain diseases. Cell Mol Life Sci, 2020. 77(17): p. 3279-3291.
43. Ben-Haim, S., Z. Mirzadeh, and W.S. Rosenberg, Deep brain stimulation for intractable neuropathic facial pain. Neurosurg Focus, 2018. 45(2): p. E15.
44. Keifer, O.P., Jr., J.P. Riley, and N.M. Boulis, Deep brain stimulation for chronic pain: intracranial targets, clinical outcomes, and trial design considerations. Neurosurg Clin N Am, 2014. 25(4): p. 671-92.
45. Pereira, E.A. and T.Z. Aziz, Neuropathic pain and deep brain stimulation. Neurotherapeutics, 2014. 11(3): p. 496-507.
46. Gonzalez, V., et al., Deep brain stimulation for Huntington's disease: long-term results of a prospective open-label study. J Neurosurg, 2014. 121(1): p. 114-22.
47. Smeets, A., et al., Deep Brain Stimulation of the internal globus pallidus in refractory Tourette Syndrome. Clin Neurol Neurosurg, 2016. 142: p. 54-59.
48. Karalis, N. and A. Sirota, Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nature Communications, 2022. 13(1): p. 467.
49. Nagano, M., et al., Excitatory neurotoxic properties of pontamine sky blue make it a useful tool for examining the functions of focal brain parts. Jpn J Physiol, 2004. 54(1): p. 61-70.
50. Schwerdtfeger, W.K., E.H. Buhl, and P. Germroth, Disynaptic olfactory input to the hippocampus mediated by stellate cells in the entorhinal cortex. Journal of Comparative Neurology, 1990. 292(2): p. 163-177.
51. Powell, T., W. Cowan, and G. Raisman, The central olfactory connexions. Journal of Anatomy, 1965. 99(Pt 4): p. 791.
52. Mikulovic, S., et al., Ventral hippocampal OLM cells control type 2 theta oscillations and response to predator odor. Nature Communications, 2018. 9(1): p. 3638.
53. Van Groen, T. and J.M. Wyss, Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections. Journal of Comparative Neurology, 1990. 302(3): p. 515-528.
54. Padmanabhan, K., et al., Centrifugal inputs to the main olfactory bulb revealed through whole brain circuit-mapping. Frontiers in neuroanatomy, 2019. 12: p. 115.
55. Moberly, A.H., et al., Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nature communications, 2018. 9(1): p. 1528.