1. Siegel RL, Miller KD, Jemal AJCacjfc. Cancer statistics, 2018. 2018;68(1):7-30.
2. Wang J, Wu S-GJBCT, Therapy. Breast cancer: an overview of current therapeutic strategies, challenge, and perspectives. 2023:721-30.
3. Bukhari MH, Arshad M, Jamal S, Niazi S, Bashir S, Bakhshi IM, et al. Use of Fine‐Needle Aspiration in the Evaluation of Breast Lumps. 2011;2011(1):689521.
4. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman DJCacjfc. Global cancer statistics. 2011;61(2):69-90.
5. Modjtabai A, Khatib OM. Guidelines for the early detection and screening of breast cancer: World Health Organization, Regional Office for the Eastern Mediterranean; 2006.
6. Mort E, Esserman L, Tripathy D, Hillner B, Houghton J, Bunker J, et al. Diagnosis and management of early-stage breast cancer. 1995;2:25-42.
7. Gomes Pinto D, Schmitt FCJAC. Overcoming Pitfalls in Breast Fine-Needle Aspiration Cytology: A Practical Review. 2024;68(3):206-18.
8. Yue W, Wang Z, Chen H, Payne A, Liu XJD. Machine learning with applications in breast cancer diagnosis and prognosis. 2018;2(2):13.
9. De'ath G, Fabricius KE. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology. 2000;81(11):3178-92.
10. Lemon SC, Roy J, Clark MA, Friedmann PD, Rakowski W. Classification and regression tree analysis in public health: methodological review and comparison with logistic regression. Annals of behavioral medicine. 2003;26(3):172-81.
11. Feldesman MR. Classification trees as an alternative to linear discriminant analysis. American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists. 2002;119(3):257-75.
12. Malehi AS, Jahangiri M. Classic and Bayesian Tree-Based Methods. Enhanced Expert Systems. 2019:27.
13. Jahangiri M, Khodadi E, Rahim F, Saki N, Saki Malehi A. Decision‐tree‐based methods for differential diagnosis of β‐thalassemia trait from iron deficiency anemia. Expert Systems. 2017;34(3):e12201.
14. Rahim F, Kazemnejad A, Jahangiri M, Malehi AS, Gohari K. Diagnostic performance of classification trees and hematological functions in hematologic disorders: an application of multidimensional scaling and cluster analysis. BMC medical informatics and decision making. 2021;21(1):1-13.
15. Jahangiri M, Rahim F, Saki N, Saki Malehi A. Application of Bayesian Decision Tree in Hematology Research: Differential Diagnosis of β-Thalassemia Trait from Iron Deficiency Anemia. Computational and Mathematical Methods in Medicine. 2021;2021.
16. Rasool A, Bunterngchit C, Tiejian L, Islam MR, Qu Q, Jiang QJIjoer, et al. Improved machine learning-based predictive models for breast cancer diagnosis. 2022;19(6):3211.
17. Sachdeva RK, Bathla PJIJoSI. A machine learning-based framework for diagnosis of breast cancer. 2022;10(1):1-11.
18. Street WN, Wolberg WH, Mangasarian OL, editors. Nuclear feature extraction for breast tumor diagnosis. Biomedical image processing and biomedical visualization; 1993: SPIE.
19. Wolberg WH, Street WN, Mangasarian OLJCl. Machine learning techniques to diagnose breast cancer from image-processed nuclear features of fine needle aspirates. 1994;77(2-3):163-71.
20. Mangasarian OL, Street WN, Wolberg WHJOr. Breast cancer diagnosis and prognosis via linear programming. 1995;43(4):570-7.
21. Loh WY. Classification and regression tree methods. Encyclopedia of statistics in quality and reliability. 2008.
22. Loh W-Y, Shih Y-S. Split selection methods for classification trees. Statistica sinica. 1997:815-40.
23. Loh W-Y. Improving the precision of classification trees. The Annals of Applied Statistics. 2009:1710-37.
24. Kim H, Loh W-Y. Classification trees with bivariate linear discriminant node models. Journal of Computational and Graphical Statistics. 2003;12(3):512-30.
25. Kim H, Loh W-Y. Classification trees with unbiased multiway splits. Journal of the American Statistical Association. 2001;96(454):589-604.
26. Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics. 2006;15(3):651-74.
27. Grubinger T, Zeileis A, Pfeiffer K-P. evtree: Evolutionary learning of globally optimal classification and regression trees in R. Working Papers in Economics and Statistics; 2011.
28. Šimundić A-MJM, sciences b. Measures of diagnostic accuracy: basic definitions. 2008;22(4):61-5.
29. Wang K, Phillips CA, Saxton AM, Langston MA. EntropyExplorer: an R package for computing and comparing differential Shannon entropy, differential coefficient of variation, and differential expression. BMC research notes. 2015;8(1):1-5.
30. Kuhn MJJoss. Caret package. 2008;28(5):1-26.
31. Stevenson M, Stevenson MM, BiasedUrn IJTftaoedRpv. Package ‘epiR’. 2015.
32. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. Package ‘pROC’. 2021.